# Reproducing the results from the paper We explain here how to reproduce the `BAxUS` and the `EmbeddedTuRBO` results from our paper. Please increase the number of repetitions `-r` if too low. ## Main paper results ### Figure 2 For Figure 2, we used the following code: ```python import math import numpy as np from matplotlib import pyplot as plt ``` Define the HeSBO success probability: ```python def succ_hesbo(D,d,de): """ HeSBO success probability (independent of D) """ if d 0], axis=0) print(mean.shape) sortkeys = np.array([i+1 for i in range(len(mean)) if mean[i]>0]) hist_bins_format = [f"{f'{hb:.2f}'.replace('0.','.')}" for hb in mean] print("sc",sortkeys) color = "#5D3A9B" if bs == EmbeddingType.HESBO else "#E66100" label = "HeSBO" if bs == EmbeddingType.HESBO else "BAxUS" ax.grid(which='major', color='#CCCCCC', linestyle='--') ax.grid(which='minor', color='#CCCCCC', linestyle=':') bar = ax.bar(sortkeys+group, mean[mean > 0], yerr=stderr, width=bar_width, label=label, color=color) ax.bar_label(bar, fmt='%.2f') ax.set_xlabel("\# target dims. containing an important input dim.", size=14) ax.set_ylabel("empirical probability", size=14) ax.legend(loc="upper left") fig.tight_layout() ``` ### Figure 7 To reproduce the results from Figure 7, run ```bash python benchmark_runner.py -a baxus -f lasso-hard -m 1000 -r 20 -id 500 -td 1 --adjust-initial-target-dimension --n-init 10 ``` for the BAxUS result and ```bash python benchmark_runner.py -a embedded_turbo_target_dim -f lasso-hard -m 1000 -r 20 -id 500 -td TARGET_DIMENSION --n-init 10 ``` where you replace `TARGET_DIMENSION` with 2, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. ### Figure 8 To reproduce the results from Figure 8, run ```bash python benchmark_runner.py -a ALGORITHM -f lasso-dna -m 1000 -r 20 -id 500 -td 1 --adjust-initial-target-dimension --n-init 10 ``` where you replace `ALGORITHM` with `baxus` or `random_search`.